*Hirakoubai* and *kaeshikoubai*

Right triangle magic: how to layout common slopes. Part 7 in a series.

This is part seven in a series of posts:

- Sashigane 1: Introduction
- Sashigane 2: Traditional Units
- Sashigane 3: Physical design
- Sashigane 4:
*Hyoume*and*Urame* - Sashigane 5:
*Kou,**ko,**gen* - Sashigane 6: Simple usage
- Sashigane 7: Right triangle magic (this post)

## Why bother?

Before going full-nerd and explaining all this dry geometry stuff, let’s give a preview of where we are heading.

Here’s the kind of model mentioned in the last post that I’d like to construct. It models the corner of a “simple” temple roof:

Take a closer look at those images on the left: every one of those rafters seat
in a mortice that holds the part at *exactly* the correct angle to hold the roof
in a flat plane. Every part joins perfectly, and all the compound-angle cuts fit
precisely, even in the corners with those compound angles.

I hope to be able to produce that kind of joinery before I die. Part of it, of
course, is skill with chisels, saws, and planes, but it all starts with
*layout*.

Believe it or not, the layout for that entire model can be achieved with a
single *sashigane* and the geometry tricks explained in this series.

## Fundamentals

To review: We’ve already discussed that Japanese carpenters (大工
) always use *slopes* (勾配)
to describe
angles, not degrees or radians. A slope is a rise over a run, and it’s helpful
to know the names of the parts:

I’ve labeled the *gen* as “slope,” but “hypotenuse” is probably more correct.
Somewhat amusingly, the kanji character actually means “mysterious, occultness,
black, deep, profound”. It’s also a component of the character 弦
which means “chord” or
“bowstring” and is also pronounced *gen.*

In other words, and more practically, the *gen* is a taught line between the
start of the run and the top of the rise!

I may be a little old to still be a padawan early in my journey, but the foreshadowing from all of that gives me shivers!

~~angles~~ slopes with a *sashigane*

Laying out Let’s say someone asked you to draw a line with a slope of ５寸 *koubai* or a
slope of 5/10.

The most direct way would be to draw a horizontal line of some fixed, but convenient length, say １０寸. Then draw a vertical line from the right end that’s exactly half that length (５寸). Then draw a “taught line” between the “start of the run and the top of the rise” to create the sloped line.

But that’s way too much work.

The more practical method that any 大工さん
(carpenter) worth his salt would use is to hold
is *sashigane* up to a straight line of *any* length. He’d tilt the tool to
align the mark on one arm to read exactly half of what was on the other arm (say
6 and 3 rather than 10 and 5). Then he’d strike his line (along the long arm of
the *sashigane*, sliding and extending as necessary):

Of course, this works for any two numbers in the same proportion. It’s just as
true with the original lengths of 5 and 10: the length of the struck line will be
different, but the *slope* (and angle) will be identical:

**This is important!**

This is not as obvious as it seems. It seems easy if you simply read and look
at the diagrams. But doing it in practice requires, well, *practice.*

Notice that in the original diagram, the run, or *ko*, was 10. But
we used the *ko* dimension on the long arm to strike the angle. Also, the *kou* is **no
longer a vertical line**, it’s now the same length, but tilted off vertical.

This is inevitably confusing at first. Just remember that the slopes remain the
same, but the lengths differ. Also remember that the *sashigane* will always
describe *two* slopes, the *hirakoubai* that’s less than 45° and the
*kaeshikoubai* that’s greater.

*chuukou*

The If you slide the *sashigane* along the hypotenuse of the triangle, it should be
obvious that there is a point where the short arm will intersect the bottom
right corner of the triangle:

This line is called the *chuukou* (中勾
, pronounced “chew koh”). It divides the larger
triangle into smaller parts.

More importantly, it describes the *kaeshikoubai* slope (relative to the horizontal).

Because the sum of the angles in any triangle always adds up to 180°, and both
the overall triangle and smaller triangles contain 90° corners, the
angle in the lower right of the smaller triangle formed by the *chuukou* is
exactly the same as the original in the lower left. Similarly, the larger angles
are also the same:

The angles labeled `a`

are both the same, as are the angles labeled `b`

.
Further, `a + b = 90`

.

The *gen* is also broken into two parts, called the “long *gen*” or *chougen* (長玄
) and the “short
*gen*” or *tangen* (短玄
).

Further, once you’ve struck a line that describes the slope of that *gen* (using
3/6, 5/10, 4.134/8.268, or *whatever* in that same ratio) you can now slide the
*sashigane* anywhere along the that line without changing the slopes: angle `a`

and `b`

will always remain the same.

If, for example, you slid the *sashigane* until the corner reached the top of
the *kou* (rise), you’d end up describing four total triangles (fractal
triangles!):

The short arm (*tsumate*) of the *sashigane* still describes the same slope as
the *chuukou*.

There are four triangles shown: the large yellow triangle (outlined by the
*sashigane*), the purple triangle, and the two smaller yellow triangles.

**All four** of these triangles have exactly the same shape. All of them contain
the same two *hirakoubai* and *kaeshikoubai* slopes (`a`

and `b`

) but in
different orientations.

The lengths of the sides differ, but the *slopes* are the same.

We will need at one more post to discuss one more critical slope before we can get to how all this is applied. There is some pretty neat mathematical magic coming up.

But we’ve already covered enough to layout some simple constructions. The next post will describe one such application.

Stay tuned!